تشخیص الگوهای کنترلی با استفاده از شبکه های عصبی

thesis
abstract

کنترل و نظارت بر فرایند تولید از اقدامات اولیه برای تولید کالاهایی با کیفیت بالا بوده و در صنعت از اهمیت ویژه ای برخوردار است. در سال های اخیر از الگوهای جدول کنترل بطور گسترده برای حل مشکلات موجود در فرایند تولید استفاده شده است، بطوریکه غیر از الگوی نرمال، هر یک از الگوها بیانگر مشکل خاصی در فرایند تولید می باشند. در این پایان نامه سه روش برای شناخت دقیق و اتوماتیک الگوهای جدول کنترل ارائه شده است. روش اول از سه بخش اصلی تشکیل شده است: بخش استخراج ویژگی، بخش جداساز و بخش بهینه ساز. در بخش استخراج ویژگی، ضرایب تبدیل موجک به عنوان مشخصه موثر برای ارائه الگوها پیشنهاد شده است. در بخش جداساز، شبکه های عصبی مبتنی برتوابع شعاعی بررسی شده است. در شبکه های عصبی مبتنی برتوابع شعاعی، تعداد توابع شعاعی، مراکز توابع شعاعی و پراکندگی آنها تاثیر بالایی بر عملکرد شبکه دارند. به همین دلیل در بخش بهینه ساز، از الگوریتم زنبور بهبود یافته برای تعیین مقادیر بهینه آنها استفاده شده است. الگوریتم زنبور بهبود یافته برای اولین بار در این پایان نامه معرفی شده است. روش دوم از دو بخش خوشه بندی و جداساز تشکیل شده است. در بخش خوشه بندی، ابتدا یک دسته بندی اولیه بدون ناظر توسط الگوریتم خوشه بندی صورت می گیرد و داده ها در خوشه های معین قرار می گیرند. فاصله اقلیدسی داده ها از مراکز خوشه ها حساب شده و به عنوان ورودی موثر جداساز در نظر گرفته می شوند. سپس تفکیک نهایی توسط جداساز انجام می شود. در قسمت جداساز، شبکه های عصبی پرسپترون چندلایه با الگوریتم های یادگیری مختلف بررسی شده است. روش سوم از دو سطح اصلی تصمیم گیری تشکیل شده است و عمل تفکیک الگوها در دو مرحله صورت می گیرد. در سطح اول تصمیم گیری، ابتدا با استفاده از ویژگی آماری مناسب به عنوان ورودی جداساز، الگوها به سه گروه دو تایی تقسیم می شوند. سپس در سطح دوم تصمیم گیری، در هر یک از گروه ها، با استفاده از ویژگی شکلی مناسب به عنوان ورودی جداساز، تشخیص نهایی صورت می گیرد. یکی از ویژگی های شکلی برای اولین بار در این پایان نامه معرفی شده است. در این روش از شبکه های عصبی مبتنی برتوابع شعاعی به عنوان جداساز استفاده شده است و ساختار آن توسط الگوریتم زنبور بهبود یافته بهینه شده است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تشخیص الگوهای غیرطبیعی در فرآیند ساخت قطعات نیمه هادی با استفاده از شبکه های عصبی

در فرآیندهای ساخت قطعات نیمه هادی اطلاع از وجود الگوهای غیرطبیعی بر روی نمودارهای کنترلی مربوط به فرایند و پیش بینی وقوع آنها امری مهم و شایان توجه است. در این نوشتار ، فرآیند ساخت گیت ترانزیستورهای MESFET در مدار مجتمع یک تقویت کننده مایکروویو GaAs به عنوان نمونه انتخاب شده است. سپس ضمن ارائه توضیحاتی پیرامون چگونگی بدست آوردن نمودارهای کنترلی و نیز نحوه استفاده از داده های مربوط به فرآیند، رو...

full text

تشخیص الگوهای غیرطبیعی در فرآیند ساخت قطعات نیمه هادی با استفاده از شبکه های عصبی

در فرآیندهای ساخت قطعات نیمه هادی اطلاع از وجود الگوهای غیرطبیعی بر روی نمودارهای کنترلی مربوط به فرایند و پیش بینی وقوع آنها امری مهم و شایان توجه است. در این نوشتار ، فرآیند ساخت گیت ترانزیستورهای mesfet در مدار مجتمع یک تقویت کننده مایکروویو gaas به عنوان نمونه انتخاب شده است. سپس ضمن ارائه توضیحاتی پیرامون چگونگی بدست آوردن نمودارهای کنترلی و نیز نحوه استفاده از داده های مربوط به فرآیند، رو...

full text

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

full text

تحلیل ارتباط الگوهای پیوند از دور با خشک‌سالی حوضه قره‌قوم با استفاده از مدل شبکه عصبی

در این پژوهش نقش الگوهای پیوند از دور در رخداد خشک‌سالی‌های حوضه قره‌قوم مورد بررسی قرار گرفته است. در این راستا داده‌های بارش 30 ایستگاه باران‌سنجی و سینوپتیک و نیز داده‌های مربوط به 32 نمایه عددی پیوند از دور از سایت نوآ طی دوره آماری 1987-2013 اخذ گردید. در ابتدا داده‌های شاخص بارش استاندارده شده با روش تحلیل عاملی طبقه‌بندی، سپس راب...

full text

تشخیص آپاندیسیت حاد در کودکان با استفاده از شبکه های عصبی مصنوعی

Introduction: Acute appendicitis is one of the most common causes of emergency surgery especially in children. Proper and on-time diagnosis may decrease the unwanted complications. In despite of diagnostic methods, a significant number of patients yet and up with negative laparotomies. The aim of this study was to assess the role of artificial neural networks in diagnosis of acute appendicitis ...

full text

تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - پژوهشکده برق

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023